₽) +1 805-886-5920

□ navintsung@gmail.com

LinkedIn: Tsun Hin Navin Tsung Homepage: www.navintsung.com

Tsun Hin Navin Tsung

Education

2017–2023 University of California, Santa Barbara.

Ph.D. in Physics (Astrophysics Emphasis)

Thesis title: Hydrodynamical Study of the Impact of Cosmic Rays on Circumgalactic Gas

Research interest: Cosmic ray magnetohydrodynamics theory and simulations, galaxy evolution, fluid

instability analysis

Advisor: Dr. Siangpeng Oh

2013-2017 University of Oxford, UK.

Master in Mathematical and Theoretical Physics (MMathPhys)

An undergraduate degree leading to Master qualifications

Part A, B: First Class Honors (Highest classification possible)

Part C: Distinction (Highest classification possible)

Dissertation: Gyrokinetics and the Ion-Temperature-Gradient Instability in a Z-Pinch (Advisor: Dr. Felix

Parra Diaz)

Employment

2023-present Postdoctoral Research Associate, Joint Institute for Laboratory Astrophysics (JILA), University of Colorado, Boulder.

- Project leader for 3+ projects, responsible for project management, research idea development, experimental design and operation. Radiative transport modeling is required for a project.
- Performed extensive multi-physics, MHD and Particle-In-Cell simulations for astrophysical modeling. Developed quantitative models to explain simulation findings.
- Project PI and Co-PI for 4 approved national supercomputing proposals (2 PI, 2 Co-PI). The approved computing resources have an equivalent value of 110,000+ USD.
- Frequent use of parallel and high-performance computing.
- Engaged in computational astrophysics research of plasma processes in AGN jets and disk.
- Research contributions include understanding plasma instabilities at jet boundaries and their effects on dissipation and nonthermal particle acceleration/ Effects of Magnetorotational Instability (MRI) on AGN disk fragmentation.

Supervisors: Dr. Dmitri Uzdensky, Dr. Mitchell Begelman

Collaborators: Dr. Phil Armitage, Dr. Yanfei Jiang, Dr. Greg Werner

2017-2023

Graduate Research Assistant, Department of Physics, University of California, Santa Barbara.

- Performed extensive multi-physics, MHD simulations for astrophysical modeling.
- Extensive experience with high-dimensional data analysis and visualization using Python programming tools and packages.
- Experience with parallel and high performance computing.
- Research contributions include modeling of the thermodynamical effects Cosmic-Rays have on galactic halos, Cosmic-Ray driven acoustic instability and shocks.

Supervisor: Dr. Siangpeng Oh

Collaborators: Dr. Yanfei Jiang, Dr. Chad Bustard

Summer 2016 Summer Research Intern, Department of Physics, University of Oxford.

 Designed and implemented analysis tools for processing images obtained from optical telescopes. Experience with image convolution.

Supervisor: Dr. Martin Bureau

Summer 2015 Summer Research Intern, Department of Physics, the Chinese University of Hong Kong.

• The ODEs governing hydrostatic balance in a self-graviting system is solved using the Runge-Kutta 4-step method.

Supervisor: Dr. Ming Chung Chu

Technical Skills

Programming: Python, C++, Fortran, Matlab, MPI computing

Supercomputing: Frontera (TACC), Stampede2 (TACC, decommissioned), Stampede3 (TACC), Anvil (Purdue RCAC)

Tools and Packages: Athena++ (C++ based fluid code), Zeltron (Fortran based relativistic Particle-In-Cell code), Numpy, Scipy, Matplotlib, Astropy

Version Control: GitHub

Typesetting: LATEX, Microsoft Office

Publications

- 2023 **T.H.N Tsung**, S.P.Oh & C.Bustard, Impact of CR heating on Thermal and Hydrostatic Stability of Galactic Halos, *Monthly Notices of the Royal Astronomical Society*, 526, 3301–3334. https://doi.org/10.1093/mnras/stad2720.
- 2022 **T.H.N.Tsung**, S.P.Oh & Y.F.Jiang, The cosmic ray staircase: outcome of the cosmic ray acoustic instability, *Monthly Notices of the Royal Astronomical Society*, 513, 4464–4493. https://doi.org/10.1093/mnras/stac1123.
- 2021 **T.H.N.Tsung**, S.P.Oh & Y.F.Jiang, Fluid simulations of cosmic ray modified shocks, *Monthly Notices of the Royal Astronomical Society*, 506, 3282–3300. https://doi.org/10.1093/mnras/stab1926.

Under Review or In Preparation.

- In Prep **T.H.N Tsung**, B.Tan & S.P.Oh, Cosmic ray pressure support in turbulent radiative mixing layers.
- Submitted **T.H.N Tsung**, G.R.Werner & D.A.Uzdensky & M.C.Begelman, Dissipation and particle acceleration in astrophysical jets with velocity and magnetic shear: Interaction of Kelvin-Helmholtz and Drift-Kink Instabilities, (Submitted to PRL).
 - In Prep **T.H.N Tsung**, M.C.Begelman & P.J.Armitage & Y.Jiang & H.Gerling-Dunsmore, Stratified, adiabatic, local shearing box simulations of disk fragmentation with net vertical flux.

Grants

- 2024-2025 ACCESS Maximize computing allocation PHY240194 (PI), Nonthermal processes at multiphase boundaries in the interstellar and circumgalactic medium, Awarded resources: 269,000.0 Node Hours on TACC Stampede3 (Equivalent value: 63,800.00 USD).
- 2024-2025 ACCESS Maximize computing allocation PHY140041 (Co-PI), Particle acceleration and radiation driven by astrophysical magnetic reconnection and other plasma instabilities, Awarded resources: 146,000.0 Node Hours on TACC Stampede3 (Equivalent value: 54,200.00 USD).
- 2024-2025 Leadership Resource Allocation (LRAC) AST21007 (Co-PI), *Kinetic plasma processes in relativistic jets and accretion disks around black holes*, Awarded resources: 397,650.0 Node Hours on TACC Frontera.
 - 2024 ACCESS Explore computing allocation PHY240103 (PI), *Dynamic and thermodynamic effects of cosmic rays on boundary layers between hot and cold gas*, Awarded resources: 200,000 ACCESS credits.
- 2023–2024 ACCESS Discover computing allocation PHY230074 (Co-PI), *Cosmic ray Physics at the Mesoscale*, Awarded resources: 750,000 ACCESS credits.

Awards and Fellowships

- 2017-2018 Regent's Fellowship (32,000 USD), UCSB.
- 2015–2017 St. Edmund Hall Open Scholarship, University of Oxford.
 - 2016 Oxford Physics Practicals Commendation, University of Oxford.

Certification

- 2023 NVIDIA DLI Certificate Fundamentals of Accelerated Computing with CUDA C/C++, *Nvidia Deep Learning Institute*.
- 2022 Structuring Machine Learning Projects, DeepLearning.AI/Cousera.

Conferences and Invited Talks

- Oct 2024 Dissipation and particle acceleration in astrophysical jets with velocity and magnetic shear: Interaction of Kelvin-Helmholtz and Drift-Kink Instabilities, *DPP Meeting 2024, Atlanta*.
- Nov 2023 Hydrodynamical Study of the Impact of Cosmic Rays on the Stability of Circumgalactic Gas, Center of Integrated Plasma Studies Seminar, University of Colorado, Boulder.
- Oct 2023 Hydrodynamical Study of the Impact of Cosmic Rays on the Stability of Circumgalactic Gas, APSLS, University of Colorado, Boulder.
- Dec 2022 Simulating cosmic rays streaming at the meso-scale, Faucher-Giguere's group meeting, Northwestern University.
- Dec 2022 Simulating cosmic rays streaming at the meso-scale, Wisconsin astro seminar, University of Wisconsin, Madison.
- Dec 2022 Simulating cosmic rays streaming at the meso-scale, *Columbia astro lunch seminar, Columbia University*.
- Nov 2022 Simulating cosmic rays streaming at the meso-scale, *Princeton astro lunch seminar, Princeton University*.
- Sep 2022 Thermal instability with cosmic ray heating, What Matter(s) Around Galaxies, Champoluc, Italy.
- Aug 2022 Thermal instability with cosmic ray heating, 6th ICM workshop, Niels Bohr Institute, Copenhagen.
- Aug 2022 Resolved simulations of cosmic rays in the circumgalactic and intracluster medium, *Department of physics seminar, the Chinese University of Hong Kong*.
- Jul 2021 The cosmic ray staircase: outcome of the cosmic ray acoustic instability, *Eliot Quataert's Group, Princeton University*.
- Jul 2021 The cosmic ray staircase: outcome of the cosmic ray acoustic instability, Astro Tea, UCSB.
- May 2021 Cosmic ray hydrodynamics, Geophysical fluid dynamics seminar, UCSC.

Outreach

Sep-Nov School for Scientic Thought.

Designed a 5-week hands-on course on 'Plasma: the fourth state of matter' for under-privileged high school students in collaboration with UCSB Department of Education.

References

Siangpeng Oh.

Professor of Physics University of California, Santa Barbara peng@physics.ucsb.edu

Mitch Begelman.

Professor of Physics University of Colorado, Boulder mitch@jila.colorado.edu

Dmitri Uzdensky.

Professor of Physics University of Oxford dmitri.uzdensky@physics.ox.ac.uk

Yanfei Jiang.

Associate Research Scientist Center for Computational Astrophysics, Flatiron Institute yjiang@flatironinstitute.org